
C
linicians often consider 
statistics to be a dry and 
challenging subject. However, 
an understanding of the basics 

of statistic methods underpins the 
interpretation and use of current best 
evidence from systemic research. Evidence 
based medicine, which seeks to integrate 
best available evidence from systematic 
research with individual clinical proficiency, 
uses mathematical estimates to quantify 
benefits and harm. Apart from research, 
where a hypothesis is tested using certain 
criteria, statistical methods are also 
employed in audit, where aspects of care, 
processes and structure are compared to 
explicit criteria. In this series the authors 
aim to provide an overview of the basics of 
statistics for clinicians, starting with basic 
data handling techniques.

Quantitative data explained
Statistics are primarily the science of 
presentation, analysis, and interpretation 
of numerical information or data. In 
descriptive statistics raw data is simplified 
and presented as graphs, tables and 
summary statistics such as mean and 
standard deviation. Inferential statistics 
uses analysis of data to draw conclusions 
about a study population of interest. 
The sample data represents the wider 
population according to the laws 
of probability. 

Note that qualitative data is distinct 
from quantitative data because it is non-
numerical in nature, including opinions and 
text that is usually derived from contact 
with the research participants through 
various methods including interviews and 
focus groups. Quantitative data can be split 
up into observational and experimental data 
[1]. Observational data is data that has been 
collected without the use of a study or an 
investigation unlike experimental data. 

Raw data is the original, unorganised 
data in which trends and patterns are not 
easily observable [2]. 

It is vital to note the differences between 
a variable and a statistic – a variable is a 
data value that varies within the population, 
such as height. On the other hand, a statistic 
is a value calculated from the set of data 
that summarises the data in some way [3]. 
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An example of this is the average value of 
the heights collected. 

Quantitative data can be split up into 
continuous data and discrete data. 
Discrete data can only take certain values, 
e.g. gender. Continuous data is data that 
can take any value; an example would be 
weight [3]. Data can also be classed as 
categorical [2]. Categorical is subdivided 
into nominal (relates to named items 
such as blood group, ethnicity) and 
ordinal (where a specific order is present). 
Both are similar in the sense that no 
units of measurement are used for 
them, but the differentiating factor is 
that ordinal data may have some sort 
order present [2]. 

It is also important to classify data into 
parametric and non-parametric data. 
Parametric data refers to data which is 
assumed to fall under a particular sort 
of distribution; this is usually a normal 
distribution, which is further discussed 
under ‘Measuring variability and spread’ 
[2]. In addition, parametric methods are 
used when many assumptions are made, 
namely about the data population; this is 
risky as wrong assumptions can provide 
inaccurate data [1]. Non-parametric data 
takes on fewer assumptions and is usually 
not associated with a certain distribution. 
Thus, non-parametric data usually utilises 
ordinal data, where data is ranked [1].

Types of clinical studies
Decisions regarding patient care rely 
on the use of current best evidence, 
and evaluation of this requires an 
understanding of the types of trial design 
and methodology. Clinical studies may be 
prospective or retrospective.

Retrospective studies provide useful 
information where a prospective 
approach would either take too long to 
gather useful data or when there is a 
significant lag period between exposure 
to a risk factor and a specific clinical 
outcome or disease. They are also 
referred to when a prospective trial may 
be unethical or unjustified. They are 
relatively easy as they can utilise existing 
databases and registers. These are 
classified into:
• Cross-sectional studies or surveys,
• Case-control studies.

Being retrospective, the baseline 
characteristics will be different, and recall 
error may introduce bias. 

Prospective studies may, on the other 
hand, be divided into:
• Observational cohort studies: which 

involves the follow-up of two or more 
selected groups over a period of time.

• Randomised and non-randomised 
(cohort) interventional trials. As is obvious 
from the name, this form of prospective 
study evaluates an intervention over a 
period of time. 

In observational studies, the majority 
involve collecting data that is already 
available whereas interventional 
or experimental studies involve a 
systematic methodology where data 
is actively collected through a defined 
methodology [4]. 

Descriptive statistics and 
relationships between variables 
Examining raw data is an essential first 
step before statistical analysis can be 
undertaken. Study of the data yields two 
key sample statistics, a measure of the 
central tendency of the sample distribution 
and the spread of the data around this 
central tendency. Inferential statistical 
analysis depends on a knowledge of 
descriptive statistics. 

A useful distinction to be made is 
the difference between univariate 
and multivariate analysis. Univariate 
analysis analyses one specific variable 
whereas multivariate analysis is more 
complex and occurs when there are more 
variables to analyse. Often, multivariate 
analysis takes confounding variables into 
consideration, which is not the case with 
univariate analysis.

Measures of central tendency
Measures of central tendency are some 
of the most common types of descriptive 
statistics. The most common tests used 
to represent a set of data through a single 
value are the mean, median, and mode [5]. 

The mean signifies the average, and 
is best used when the data is normally 
(symmetrically) organised; this is because 
it may be influenced by outlying data 
points [5]. Different types of means have 
been defined, but the most common 
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and straightforward one used in medical 
research is the arithmetic mean. 

Figure 1

Mean = 
Sum of all data values

Number of data values

This is determined by taking the sum 
of all data values and dividing it by the 
number of individual values in the dataset 
[6], Figure 1. Other complex means include 
geometric and harmonic means [3]. 
Geometric means utilise the product of 
all data values rather than the sum and 
are often used by professionals in the field 
of investment and finance, for example, 
to find the average rate of return. The 
harmonic mean is calculated by dividing the 
number of data values by the reciprocal of 
each number and can be used to find the 
average of ratios.

The median is defined as the central 
datum when all the data are arranged or 
ranked in numerical order. This is a useful 
measure where data is not symmetrically 
distributed, or non-parametric data [2]. It is 
a literal measure of central tendency. So, for 
example, if there are 11 values, the 6th value 
would be the median. However, with an 
even number of values within the data, the 
median is calculated by the average of the 
middle two values [4]. Hence, the median 
is preferred if there are outliers that will 
hinder the mean inaccurate. 

Finally, the mode is another statistic that 
is less commonly used. The mode simply 
represents the most frequently occurring 
value in a dataset [6]. It is often not a good 
indicator of central tendency, but is the only 
means of measuring this in a dataset that 
contains nominal categories. 

Measuring variability and spread
A basic strategy to quantify the spread of 
data is the range. The range is simply the 
difference between the smallest and largest 
value in the data. However, this doesn’t 
represent much aside from the difference, 
so it is better to notate the smallest and 
largest values rather than the single value 
difference [2].

A dataset that is arranged in order of 
magnitude may be divided into 100 separate 
cut-off points known as percentiles. In 
other words, the xth percentile is defined as 
a cut-off where x% of the sample has a value 
equal to or less than the cut off point.

The interquartile range (IQR) is also 
used to measure how spread out the data 
is and is therefore a measure of statistical 
dispersion or variability. Quartiles divide 
a rank-ordered dataset into four equal 
parts. The lower quartile is the value that 
lies above exactly 25% of the data values, 
and the upper quartile lives above 75% 

of the data values [2,3]. IQR is equal to 
the difference between the 75th and 25th 
percentiles, and includes the middle 50% of 
values [3]. Note that the interquartile range 
is not influenced by outliers as much as the 
range is, hence the IQR is most appropriate 
for datasets with a highly skewed 
distribution, as in Figure 2. 

Figure 2
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Figure 3

The most useful and important 
distribution of data in statistical analysis 
is the normal or Gaussian distribution, 
which is characterised by unimodal, 
symmetrical classic bell-shaped curve, as 
shown in Figure 3. A considerable amount of 
biological data is normally distributed, such 
as height and mean arterial blood pressure 
in healthy adults. Clinical trial data will also 
follow a normal distribution provided the 
sample size is large enough. For data that is 
normally distributed, standard deviation is 
predominantly utilised to see how varied the 
data is around the mean [6].

Normal distribution is based on the mean 
and standard deviation of a specific set of 
data, where the data is not too skewed. It is 
also based around a central value, therefore, 
the mean, mode and median in a normal 
distribution are equal as they represent 
the central value in the symmetrical graph 
[2,3,7]. In a way, it can be said that the 
normal distribution represents what would 
be approximately normal or ‘typical’ in a 
population with some data values being on 
the extreme ends, for example patients’ 
weight. This is an example of parametric 
data or methods.

However, it is not actually necessary 
for data from a sample to follow a 
normal distribution in order to be 
statistically analysed, provided the data 
has been drawn from a population that is 
normally distributed.

Variance tells us how spread out the 
data is, with the calculation of the variance 
involving the sum of the squared differences 
between the data values and the mean, all 

divided by the total number of data values 
minus one [4,6]. This calculation is shown 
in Figure 4. Standard deviation is calculated 
as the square root of the variance seen in 
Figure 4. Standard deviation is considered 
advantageous over the interquartile 
range owing to the fact that all the data 
is incorporated. Furthermore, standard 
deviation is preferred to variance, as the 
variance squares the given units of the 
data set, whereas standard deviation is 
square rooted, thus giving the same units 
of the data set, which makes it easier to 
work with [3]. 

Figure 4

V = 
∑ (x – xmean)2 

n – 1

It is vital to consider here that n-1 is only 
used as the denominator for samples, but 
for populations, we use n. If we think about 
why this is the case, a sample is only a small 
subset of the population, therefore utilising 
n-1 gives a smaller denominator, as opposed 
to simply using n. Consequently, a larger 
variance is seen, as one would expect to see 
in the population. Thus, it provides a more 
accurate value of variance in the sample 
that will be more relevant to the population 
from which the sample is taken [3]. 

It is appropriate to consider z-scores here 
also. Z-scores calculate how many standard 
deviations away a data value is from the 
mean. Considering standard deviations on 
the normal distribution, we can say that 
68.2% of the data is included within one 
standard deviation away from the mean, 
on either side. For two standard deviations, 
95.4% of the data is included and for three, 
99.7% of the data is included [6]. 

Using the formula for the z-score, 
as shown in Figure 5 below, we can 
work out how far away a data point is 
from the average. 

Figure 5

Z = 
x – Mean

Standard deviation

Z-scores can also be used to work out the 
probability of a particular value occurring 
depending on where it lies on the normal 
distribution [8]. 

Statistical relationships
Mathematical relationships are examined in 
different ways. 

Correlation refers to the relationship 
between two sets of paired interval data. 
Suppose we have data based on the heights 
and weights of adults, two continuous 
variables [3]. A linear relationship is formed 
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between these two variables leading to 
some sort of correlation. For instance, as 
height increases, weight also increases, 
leading to a positive correlation. This is 
usually best represented on a scatter 
diagram – a graph with an x-axis and y-axis, 
where data is represented as coordinates 
[9]. Figure 6 below represents the different 
relationships on a scatter graph. Note that 
the closer together the points, the stronger 
the correlation. 

Positive relationship Negative relationship

No relationship

0 0

0

Figure 6

However, from this alone, we cannot 
judge the strength of the relationship as 
there is no numerical value to represent 
this. Therefore, we can make use of 
correlation coefficients that provide a 
numerical basis on the strength of the 
correlation seen between x and y [2]. The 
two most commonly used correlation 
coefficients are Pearson’s and Spearman’s. 
Note that Pearson’s correlation coefficient 
is mainly used for data samples obtained 
from ‘normally distributed’ populations 
[6]. Otherwise, if the data is skewed, 
the Spearman’s rank is used. Therefore, 
Spearman’s is a non-parametric test.

The Pearson’s coefficient is denoted by 
r, and ranges from 1 to -1, with a value of 1 
representing a strong positive correlation 
and -1 representing a strong negative 
correlation. 0 represents no correlation, 
so the closer the value to 0, the weaker 
the relationship [9]. The formula is 
represented in Figure 7. 

Figure 7

r = 

i =1
√   

n

∑ (xi – x)2 (yi – y)2

i =1

n

∑ (xi – x)(yi – y)

It is best to approach this stepwise, by 
working out each individual summation 
first, although the coefficient is usually 
worked out using statistical calculators. 
Consider the x and y graphs in Figure 

6 – xi and yi are denoted by the respective 
coordinates, and so represent the 
corresponding data values; x1 and y1 would 
therefore be an example of one set of 
corresponding data values. The mean 
of all x and y values are represented by 
x-bar and y-bar respectively as seen in the 
formula (Figure 7). 

The Spearman’s rank coefficient 
is denoted by rs. The formula is 
given in Figure 8. 

rs = 1– 
n(n2–1)

6∑D2

Figure 8

In this case, the variables are ranked from 
highest to lowest – both the x and y variables. 
The difference for each corresponding 
observation rank is taken, squared and all 
of these are summed which represents the 
summation within the formula. The value 
of r represents the same as it does with 
Pearson’s coefficient. 

It is vital to note that Spearman’s rank 
uses assigned ranks, whereas Pearson’s 
uses the raw data. Hence, if the relationship 
is monotonic, meaning as x increases, 
y increases, this would be denoted by 
Spearman’s as rs = 1. On the other hand, 
Pearson’s would represent this monotonic 
relationship differently, maybe as 0.9 
or 0.8 as Pearson’s is dependent also on 
how linear the relationship is – how close 
the scatter graph may be to forming a 
straight line [2,3,6]. 

If two variables demonstrate significant 
correlation, linear regression analysis 
can be used to calculate the straight line 
relationship which may allow us to predict 
further values. The value being predicted is 
usually the dependent variable. The term 
dependent variable is self-explanatory; it 
is the variable that depends on another 
variable, whereas the independent variable 
is not changed by any other variables [3,9]. 
Manipulation of the independent variable 
will lead to a change in the dependent 
variable. The line of best fit can be given in 
the form of a straight-line equation: y = a + bx.

The line of best fit can be worked out 
through the method of least squares, 
with the formula shown in Figure 9. Once 
the gradient b is worked out through 
this formula, a can then be worked out 
by multiplying b with the mean of x and 
subtracting this from the mean of y [9].

Figure 9

b = 

i =1

n

∑ (xi – x)2

i =1

n

∑ (xi – x)(yi – y)

To conclude, this article demonstrates 
a key focus on statistical tests and 
relationships between variables. Part 2 
of this series will provide a background 
on probability and testing, and hope to 
touch on key elements of medical studies 
such as hypothesis testing, errors, and 
other such concepts.
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