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Following on from part 1 of this series, this article aims to build on other analytical 
techniques commonly used within medical research, focusing on simple examples. 

Probability and testing
Before exploring hypothesis testing, it is 
vital to understand the basics of probability. 
The term probability is used to describe 
a numerical measure of the chance of a 
particular event occurring or the frequency 
of the event occurring. It is commonly 
written as a percentage or a decimal; 
for example, 20% is depicted as 0.2 as a 
decimal. Therefore, 100% (1.0 in decimal) 
means that there is a guaranteed chance 
that an event will occur, while 99% (0.99) 
means that it is not guaranteed, yet a very 
high possibility is still present. Hence, 
probability can only lie within the range of 
0% to 100% (or 0 to 1.0). It is now common 
to say that probability is a degree of belief in 
an event occurring, rather than objectivity 
that an event will occur (as it is not possible 
to have objectively observed the frequency 
of an event occurring in a particular 
reference group) [1]. 

The events themselves can be 
classified as independent or mutually 
exclusive. Consider two events; if these 
are independent, they can occur at the 
same time and are thus unrelated. While 
mutually exclusive events cannot both 
occur at the same time [2]. If we were 
to work out the total probability of two 
mutually exclusive events occurring, we 
take the sum of the probabilities of the 
events. On the other hand, if the events 
are independent, then we must take the 
product of the probabilities instead. 

Probability values that are used to test 
a hypothesis, a suggested theory that 
we are working to prove or disprove, are 
depicted as the P value. First, we form a null 
hypothesis and an alternative hypothesis. 
The null hypothesis states that there is no 
significant difference between populations 
or groups that are being investigated. 
For example, suppose we are testing the 
probability of picking a blue ball out of 
a bag containing blue and red balls. The 
null hypothesis would state that there 
should be an equal chance of picking out 
blue and red balls and thus there is no 

significant difference in the likelihood of 
each event occurring. This is denoted as: 
H0 = probability of picking a blue ball is 0.5.

The alternative hypothesis, on the 
other hand, states that there is a significant 
difference in the likelihood of each event 
occurring. In this example, the alternative 
hypothesis, denoted as HA, could be as 
follows: HA = the probability of picking a 
blue ball is lower. 

Continuing this example to understand 
the P value, say we pick a ball 600 times; 
using the null hypothesis, we would expect 
to observe a blue ball picked out 300 times. 
However, if we have observed a blue ball 
picked out around 50 times, then the actual 
observed probability here would be 50/600, 
which is around 0.083. This is known as the 
P-value, which is defined as the probability 
of any observed results occurring by chance 
[3]. The P-value is a probability between 
0 and 1 and depicts how strongly the 
observed data supports the null hypothesis. 
A large P-value indicates the observed data 
supports the null hypothesis whereas a 
small P value indicates the data does not 
support the null hypothesis. To interpret 
P-values, a significance level is set, which 
is typically 0.05. If the P-value is less than 
0.05, then the null hypothesis is rejected 
due to significant evidence being present. 
When the null hypothesis is rejected, it 
is said that the results are statistically 
significant. In the example above, the 
P-value was 0.083, which is greater than 
0.05. For this reason, we say that there 
is insufficient evidence to reject the null 
hypothesis and thus the results are not 
statistically significant [2]. 

With the 0.05 significance level, you can 
be 95% sure about the decision to reject 
the null hypothesis [3]. Hence, hypothesis 
tests may seem ambiguous in the sense 
that there is no certainty and they only 
inform us whether the given data supports 
the proposed hypothesis [1]. If we consider 
the alternative hypothesis that we stated 
in the example above ‘HA = the probability 
of picking a blue ball is lower’ – we must 
note that this represents a one-tailed 
test because probability is being tested 
in one direction. To make this two-tailed, 
we can state for HA that the likelihood 
of picking a blue ball is either lower or 
higher than 0.5 [2]. 

As with all statistical tests and 
experiments, errors are expected. The 
common errors related to hypothesis 
testing are known as type 1 and type 2 
errors. A type 1 error occurs when the null 
hypothesis is rejected even though it is true 
[1,2]. This is sometimes also known as a false 
positive result [4]. The probability of this 
occurring is indicated by the significance 
level of the test – as explained above, 
the significance level of 0.05 means that 
there is a 5% chance that the decision to 
reject the null hypothesis is wrong. This 
is sometimes denoted as alpha (a). An 
example of a false positive in the clinical 
setting is an individual testing positive for 
pregnancy when they are not pregnant. A 
type 2 error, on the other hand, is when the 
null hypothesis is accepted but it is false [1]. 
This is also known as a false negative [4]. 
The probability of type 2 errors occurring 
is denoted as beta (ß). Type 2 errors are 
closely related to the statistical power of 

Table 1: Depiction of type I and type II errors

Results of the experiment Null hypothesis

TRUE FALSE

Experiment shows significant result False positive

Type I error

True positive

No error

Experiment shows no significant result True negative

No error

False negative

Type II error
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a hypothesis test; this power is defined as 
1- ß. Thus, the power tells us the probability 
that we correctly reject the null hypothesis. 
Power is closely related to sample size and 
consequently type 2 errors tend to occur 
when the sample is too small. Hence, a 
study with a small sample size and thus low 
power will have a greater likelihood of a type 
2 error. Typically, a power of 80% or higher 
is deemed appropriate for research studies 
and should be taken into consideration 
when planning a study. Table 1 depicts the 
circumstances under which type 1 and 
type 2 errors would occur [5].

Confidence intervals are another 
example of a helpful method in interpreting 
results using statistical analysis – it tells us 
how much uncertainty there is around a 
particular parameter. Say we take a sample 
from a population of interest; we aim to 
work out a mean of a specific characteristic 
for the people using this sample, e.g. 
weight. However, the selection is only a 
tiny chunk of the population and randomly 
selected; hence there is a slight chance 
that the mean may not be representative of 
the actual value. Different samples of the 
same population may indeed end up giving 
a variety of diverse values – this is known 
as sampling error. This is where the use 
of a confidence interval can be helpful. A 
95% confidence interval provides a range 
in which the population mean could lie, 
with a 5% chance that this is not the case 
[6]. So, there is a 0.95 probability of the 
population mean lying within the calculated 
range. The larger the sample size, the lower 
the sampling error and the narrower the 
confidence interval [4]. In order to calculate 
the confidence interval, we must consider 
the standard error.

Simply put, the standard error is the 
standard deviation (please refer to part 1 
for further details on standard deviation) of 
the means acquired from all the different 
possible same-size samples from the 
population [3]; thus, the standard error tells 
us the standard deviation of a population’s 
sampling distribution. The formula, seen 
in Figure 1, simply uses the population 
standard deviation. We then use the 
formula in Figure 2 to work out upper and 
lower values for the confidence interval. 
Note that ±1.96 is used to represent the z 
score (normal standard deviations) at ±2.5% 
to obtain a 95% confidence interval. 

Figure 3: An example of a simple forest plot.
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Confidence intervals are commonly 
represented through forest plots. A forest 
plot is frequently used to represent results 
from a meta-analysis [7]. These are usually 
a collection of results from a variety of 
different studies. A forest plot can concisely 
represent their findings. Figure 3 is an 
example of a forest plot obtained from a 
systematic review [8]. Usually, a shape in 
the middle represents the result of the 
study with the horizontal line representing 
the 95% confidence interval [9]. At the 
bottom is a shaded diamond representing 
the overall result from the analyses. The 
vertical line in the middle represents the 
null hypothesis where there is no significant 
difference. Depending on the hypothesis, if 
the result lies either to the left or the right 
of the line, the results are significant and 
favour either side of a two-tailed test. If the 
overall result is touching the vertical line, 
there is no significant difference [7]. 

Tests for comparing different  
types of data
Analysis of results is a critical part 
of statistics which allows us to make 
conclusions alongside calculating if the null 
hypothesis is to be accepted or rejected. 
There are a variety of different tests that 
enable us to make comparisons between 
data. One example is the t-test which is 
primarily used to compare means between 
two different groups of data. As explained 
above, the null hypothesis states that there 
is no significant difference between the 
two means. There are a number of distinct 
t-tests that can be used [9]:
• One sample t-test: one group mean 

is being compared to set values, e.g. 
average height. 

• Two sample t-test: comparing two group 
means that have been obtained from 
different populations, e.g. populations from 
two different countries. This is also known 
as the Student’s T-test and is the most 
commonly used. Figure 4 represents this, 
where s2 is the standard pooled error and n 
represents the number in each population. 
The standard pooled error is the average 
standard error from the two populations. 

• Paired t-test: comparing two group means 
that have been obtained from a single 
population, e.g. same country. 

What the t-test actually represents is a 
difference between the two means. From 
this, we can then obtain a P-value using 
probability tables, which is then used to make 
a conclusion whether to either accept or 
reject the null hypothesis. 

Although practical, t-tests can only be used 
to compare two groups of data. However 
where there are greater than two groups of 
data, analysis of variance (ANOVA) testing can 
be useful and provide a solution to comparing 
larger groups of data that are all independent 
[10]. ANOVA analyses differences between 
the group averages through the use of the 
variances. Table 2 below represents what a 
standard ANOVA one-way table looks like, with 
each of the relevant formulas stated. Although 
this looks very daunting at first, breaking it 
down into each separate element makes it 
easier to understand.

The formula for sum of squares within (SSW) 
represents the variation within each group, 
which is then all summed. This is worked out 
by calculating the difference between each 
observation in the group and the mean of that 
group, squaring them and taking the sum. We 
do this for each group and calculate the total 
which is SSW – this is represented by the sum 
function up to k (k is the number of groups). On 
the other hand, sum of squares between (SSB) 
represents variation between each of the 
individual groups. This is worked out by taking 

Table 2: ANOVA one-way table [11].
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the difference of the group mean from the 
overall mean, squaring them, and summing 
them for the total number of groups. Finally, 
the total sum of squares (SST) is worked out 
by the addition of SSB and SSW.

Note that there is a column known as 
degrees of freedom. This is defined as 
the number of independent groups of 
information present; we have k-1 as the 
degrees of freedom as there are k sample 
groups but one estimated parameter from 
each group, which is the mean. This is also 
an important aspect in forming the P-value 
in the t-test. 

The mean squares (MS) is worked out 
using the degrees of freedom and the sum 
of squares which is very simple. We can then 
work out the F statistic – note that the null 
hypothesis states that there is no difference 
between the means (through using MSB 
and MSW), and so the F ratio is expected to 
be 1 if the null hypothesis is true. We again 
use probability tables and a significance 
level to obtain an F critical value to make a 
conclusion. In the instance that there are 
only two sample groups, then a t-test and 
ANOVA testing will give the same results.

Another method of comparing data is the 
chi-squared test. While the t-test is used 
for normally distributed parametric data, 
chi-squared test is non-parametric, where 
data follows no particular distribution [12] 
and assesses for relationships between 
categorical variables. Note that the chi-
squared test is also a significance test where 
a hypothesis is present. The larger the value, 
the greater the difference between expected 
and observed results and the greater the 
chance of rejecting the null hypothesis, 
telling us that the variables are associated. 
But we still need p-values or critical values 
to make this conclusion. The formula for 
chi-squared is represented by figure 5:

(0 – E)2 

∑ Ex2 = 

Figure 5

A much simpler formula compared to 
ANOVA and t-tests. We must take the 
difference between observed and expected 
values, square this, and divide by the 
expected value. We do this for each of 
different sets of observed and expected 
values and take the sum of this. We can then 
use the result to make a conclusion whether 
or not to reject the null hypothesis. 

There are also some other tests such as 
Mann Whitney U and Fisher’s Exact test 
which can be used for hypothesis testing. 
Determining which type of hypothesis test 
to use depends on the type and distribution 
of the data, how many groups are being 
compared and the characteristics of the 
outcome variables. Therefore, it is always 
useful to contact a statistician to determine 
the most appropriate test for statistical 
analysis. Most types of hypothesis tests 
are commercially available or can be 
found in online statistical packages. It is 
important to remember that hypothesis 
tests can only give information about the 
statistical significance of the data but do not 
provide any information about the clinical 
significance of the result.

To conclude, this article has given an 
overview of probability, hypothesis testing 
and comparing groups of data. The third 
and final part of this series will focus on 
statistics in diagnostic testing.
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